NASA Avionics Conference CNS in the National Airspace System

Mike Harrison, Director
Architecture and Systems Engineering
Federal Aviation Administration
April 30, 2002

NAS Evolution Toward Greater Complexity

Evolution of CNS

- C toward digital that carries a greater mix of services and capabilities
- N toward satellite navigation with a ground-based backup
- S toward a mix of primary and secondary radar with addition of multi-lateration and Automated Dependent Surveillance

Automatic – Broadcast - Contract

Problem:

- Too Many CNS Capabilities Available
- Too Little Implementation to Produce Benefits
- Difficult Business Cases
- Benefits Accrue to the Unequipped
- Who Wants to Buy Avionics?

Waste of Scarce National Resources to Invent New CNS

Shift Focus to Mining Capabilities and Benefits From Currently Planned Avionics – Add to the Business Case

Operational Evolution Plan Sets Priorities for Capacity

and Efficiency

30 Percent Improvement Target by 2010

Understanding System Performance: Handling 30% More Traffic by 2010

OEP Holds National Performance Constant Even with about 30% Increase in Demand

OEP Implementation Strategy

GDP and Domestic RPM: 1960-2000

Percent of the Day at Reduced Capacity

- Reduced Capacity
- Optimal Capacity

© MITRE/CAASD

Sustaining Capacity Issues

- Simultaneous Offset Instrument Approaches
- Independent arrival streams to runways separated by 2,500 feet
- The runway drop zone capacity's free fall Below VMC to CAT I A softer loss of capability is needed
- Simultaneous operations to intersecting runways Independent Dependent
- Noise

Navigation The Separation Safety Triad **Communications** Surveillance

Communications

VDL transition with data link services
CPDLC on VDL-2 with service provider
When performance degrades, shift
to VDL-3 in major terminal airspace

SATCOM in lieu of VHF
As cost effective as VHF to the Gov't?

SATCOM for ADS

ADS-A via SATCOM or HF data link today

Offshore surveillance coverage

Transition
Rulemaking

8.33 or Digital Decision

Below FL 290 & Terminals

< Required above FL 290

Communications Issues

- Digital transition for voice and data Incentives for users?
 Exclusionary airspace?
- New applications that increase throughput
- Spectrum purity of use for safety of life protection Integrated bandwidth use
- Low altitude communications offshore/Alaska
- Cockpit information overload presenting information that adds to situational awareness, not distracts the pilot

Need WAAS # 3 GEO GEOSAT Service INMARSAT-3 Coverage

POR (180 W) AOR-West (55.5 W)

Navigation Issues

- Backup to GPS
 What's it going to be?
- Controller workload during interference
- LAAS CAT II/III

If ILS CAT II/III retained as backup it erodes benefits of LAAS

RNAV/RNP

Advanced approaches more important than CAT II/III in terms of benefits

FMS differences problematic to RNP

 "Seek and destroy" GPS interference sources Satellite detection and ranging of interference?

All FAA SSR LOS Coverage Estimate 6k ft Above Ground Level Coverage Count

ADS-B Transition and Benefits Profile

ADS-B National Deployment

 Provide ADS-B position, velocity, and (possibly) intent data to en route, terminal, and airport surface ATC facilities

Operational Domain	Number of Locations
Airport Surface	59
Terminal	59
En Route w/ Radar Coverage	90 - 110
En Route w/o Radar Coverage	20 - 40

- Other capabilities to be provided:
 - Traffic Information Service-Broadcasts (TIS-B)
 - Multi-lateration for surveillance of those aircraft on the surface that are equipped only with Mode A/C/S transponders

Surveillance Issues

- Homeland Defense requirements are TBD
 - Federal networking of surveillance information
 - Improved separation on approach and landing
 - Surveillance Fusion
- ADS-B
 - Link Decision
 - Who gets credit for the benefits?
 ADS-B or Multi-lateration
 - En route benefits elusive
 - Terminal benefits limited by pilot and controller roles and responsibilities
- Gulf of Mexico Surveillance coverage options

Automation Issues

En Route Host Replacement

Balance between sustainment and new concepts of operations

"Enabling" is not the same as doing History says "aviation for the next 20 years"

NAS-Wide Information System

The time is right for the flight object

Intent

- Capturing intent changes everything
- Leverages avionics and automation
- Reduces uncertainty

Systems View of the Future CONOPs

Evolution of ATC/ATM

Past

Procedural Separation

Estimate current & future aircraft positions

Present

Radar Separation

Know current & estimate future aircraft position

Future

Trajectory Separation

Know current and future positions

Conclusion:

- 1. Pause in reinventing avionics
- 2. Shift focus toward building a better business case through strengthening applications
- 3. Implement applications
- 4. Enough new CNS more use of procedures and intent information linking CNS and Automation
- 5. Seek niche markets for new capabilities (e.g., Gulf of Mexico)